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1. One modeapproximation

Assume thdunctionto beapproximateatan be expanded in a series
¢ = D (R e (1)
n
wheren=0, + 1, + 2, E . For one mode approximatiomply thefirst three termare takenthat is
P) = SN ET + o { ¥ EF 4 g & @)
In two and higher dimensional spacsgriables x and k, become vectors and k. To
approximate high dimensional functions, one shawldsider the origin and its neighbors. Using

two-dimensional hexagonal lattice as an example, one mode approxime#os only the origin

term and the six nearest neighbors, depicted in Figure 1.

Figure 1
One modeapproximationis not a good approxinian for square wave. To expand square
wavefunctionaccording to eq. 1f, decrease witlm in an order of I, which is very slow and a
large number of terms are required to approximate it well enough. This also explains that spectral
method is not suitdé to deal with strong segregatisystems where the density profiesembles

a squaravavefunction

2. Spinodal decompositionand nucleation (For more details, se&haikin and Lubensky,
Principles of Condensed Matter Physi¢995, p479191)

Consider thdollowing dynamic equation,

99 _ v iF

ot 56 )

(It is an equation that describes the evolution of conserved order paraineliedar instability



analysisthe order parameter is firstexpressed as
¢ = ¢y + 69 4

where fy is the average order parametand d fdescribes the fluctuatiorThen eq. 3 finally
reaches the form no matter what the exact expressien of

9 56 = P(9)66 5)

ot
If P(f)>0, fluctuation amplifies with time because

6 = bp P (6)
is anincreasing functionln other wordsfluctuationgrows spontaneousklyhenP(f) is positive
This kind ofevolutionpath is called spinodal decomposition. WIRF) is negative, fluctuation is

suppressedlo form a new phase, an energy barrier should becor®. This kind of evolution

path is called nucleation.

(a) (b)
Figure 2
The einodal curve is, strictly speaking, a meéald concept.In real systems, where
fluctuations are important, the boundary separating nucleation fsiimodaldecomposition is not
perfectly sharpWhen the free energy barrier is close to or smaller than the thermal ehergy, t
fluctuation is important. In this case, nucleation and spindeledmpositiorbehave similarly and
cannot balistinguishedrom experimats. Therefore, iis impossible to determine spinodal curve

exactly via experiments.

3. Conserved and norconserved order parameter

Dynamic equation for nenonserved order parame{&lCOP)is



9 _ _,F

ot o (7
This is an example of dissipative equation. The degree of orientation for liquid crystal is an
example for nortonserved order parameter.

An intuitive derivation of the dynamic equation for consereederparametefCOP)is given

below. Each conserved parameter is associated with a continuity equation,
% +Ved =0 (8)
ot

where the first term stands for the variation of the omlgameteiitself, and the second term
represents the change of order parameter due to the in and out flux. In fluid dynamics, it can be
written as

9p

L ivevp =0 9
o p 9)

The fluxJ is just the gradient of density. In phase separation systems, the expressisn for
J=-MVpu (20
whereM is the mobility andmis chemical potentialSubstitute eq. 10 into eq. 8, and using the

definition of chemical potential

oF
= 171
=5 (11)
the dynamic equation can be finally written as
99 = MV?2 SF (12
ot 5¢

NCOP and COP belve differently in linear stability analysis. For COP, one specific modéwill

selected to grow new phase, i.e. a struoiitie a certain characteristic length will be formed.

4. Ginzburg criteria (For more details, see Chaikin and Lubengkynciples ofCondensed

Matter Physics1995, p21416)

Ginzburg criteria aréhe criteriafor determining whether or not the mefégld approximation
breakdowns. It quantitatively measures the importance of fluctuations by considering the average
over a coherence vahe, V=¥ of the deviation o ¢x)=f(x)-<f>, of the local order parameter
from itsequilibriumvalue:

Seon =V [, dx80(4) (13

Fluctuations are negligible if €(£)> is much less than &>, otherwise, fluctuations are



important and the medield approximation will fail.
Under what conditions will the medited approximation be valid?
(1) High dimension spacé, 4.

(2) Long rangeanteractions.

5. Scattering (For more details, see Chaikin and Lubengkynciples of Condensed Matter
Physics 1995, p297, p4749)

d?%o

In scattering theory, thecatteringcrosssection a which is the differential crossection

perunit solid anglejs a key quantityit represents a static cressction obtained experimentally
by integrating over all possible energy transfers to the mediumralctice this integration is
naturally accomplished by-FKay diffraction but not by neudn diffraction. In quantum mechanics,

the scattering crossection relates to the transition rédgysin

dz_a ~ 2_W|Mk,k' | (14

If the scattered particle interacts with the scattering medium via a potérfdal the interaction
is sufficiently weak that only lowest order scattering need be considered for the entire sample),
then by Fern@ golden rule, the transition rate betwettyre incident (incoming) and final
(outgoing) plane wave ates of the scattered particles Jand k&>, is proportional to the square of
the matrix element,

M = (kU [k) = [dfxe  ug)e (15)

whereU(x) is the sum of terms arising from each of the individual atoms in multiparticle system:

U => U (x—x) (16)

wherex, is the position of the atom arbitrarily labeled The matrix element in the scattering

crosssection then has the form

My = Zfddxe*”('xu“ (x —x,)e'kx (17

This can be placed in a more convenient form by takRigex-x ;:



My = Zfddee*“"(Xu RIY (R, )e K &R
= Za:efi(k—k‘)x“ fdd R e ¥R .y (R )
= i:efiq-xn fdd F\,QUQ(RQ)Gﬁq,Rn
=S U, (g

(18

Hereq is the scattering wave vector. The relatiomdf andkadis illustrated in Figure 3J,(q) is

Figure 3

the atomic form factor or Fourier transform of the atomic potefiied. scatteringrosssection is

d’c 27 . i i
— ~—>»Uu (Qe X dd X 19
e LU, (9 (19
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Eq. 19 expresses the scattering cisEsgion for a particular configuration, specified Ilne t
position vectorx,, of atoms in the samplé#.the positions of the atoms are rigidly fixed, as they
would be in a classical system at absolute zero, then Eqs 19 and 14 correctly give tbectimss

In real materialsparticles move about, probingre regions of phase space determined by the
rules of statistical mechanics, and some ensemble average of the ideakctmssis required.
Assuming that time averaging and averages over all allowed configurations (ensemble &verages
denotes by anguldrackets <>) are equivalent (i.e. that the system is ergodic) we have the static

or quasielastic limit. In thidimit, the scattering crossection is

dZU 2 U * —ig-x éQ'X- 20
EN EZ LU, (ge ™7 ° (20)

If the atoms are identical, then the form factor in eq. 20 comes outside the sum and the bracket,
and the scattering crosegction from a statistical system becomes

d?o 2

— ~ U | 21

5o~ M.@[1( (21)

wherethe function



1(g) = <Zeiq(x,\ X)) > (22

depends only on the positions of the atoms in the scattering medium and not on the nature of the
interaction between atoms and the scattering pt@ipeis thus called the structure function.

The structure function can be expressed in terntens§ity operator and correlation function
as shown below. The number density operator specifying the number of particles per unit volume
at pasition x in space is defined as

nx =>» qx —x,) (23

wherex, is the dynamical variable specifying the gims of particlea. The ensemble average of

the density operator is the average densiky at

(n60) <zax X)) > (24)

In homogeneous, isotropic fluidsn&)> is independent of and is simply the average density
n=N/V. In crystals, /(x)> becomes a perilic function ofx. The Fourier transform of the density

operator is

n(@ = [doxe (3
= fddxe*‘q'XZ&x -X,)
= Zfddxe*“;xé(x —-X,) (29

_ Zefiq»x"
@

Here we use thsifting propertyof the delta function which will be used over and over again

throughout this note:
fdxf(x)é(x— x) = {x) (26)

We can now express thewgtture function in terms of density operator:

IM)—<2E*“““”>

a,a’

- <Ze‘q'xu Zéq‘xr-'> @7
<Zeiq'xn TeiCox, >

= (n(@n(—9 )

This is simply a Fourier transform of the tpoint densitydensity correlation functionwhich is



defined as
Con(XpX5) = (n(x)r(x) ) (29)

It can be seen from

dX ddxze iq-(x — z)q] (X]_’XZ)
[ dxd?xe 0D rixp ) )
fddxe 9% n(x )fodxzéqX2 |Qx;_)>

d
|
<fddxe 'qxlr‘(x)fd’xzéquZé(x
<fddxe"qxlr‘(x)2fodx2éqx26(x —x )>
Jewoe
<Z o, fddxle'qxlza(xl . >

=

=

(2

=

= 1(q) (29
In a periodic solid, thensembleaverage of density operator candeeomposedhto Fourier

components with wave vectors in the recigddattice:

(n(®)) = > (ng )’ (30)

G

Thus, the average number density in a periodic solid is fully specified by its Fourier components

<ng> at reciprocal lattice vectofs.

Figure 4

If scatterers are rigidly fixed at sites on a periodic lattice, the scattering matrix element (eq.

18) becomes



Mk =V ZUG‘SqG (31)
G

This can be seen from
M = S U, (e 9%
_ izu ((_.1)6—i(.‘-;-x”é(G—q)-x(k

G «

0, if q=G (32
123U (@e e, if q=G
G «
=V ZU Géq,G
G

Thescattering crossection then becomes
dZO, 2 2
==V ZPG| e (33
dQ o

Thus, there will be peaks in the scattering pattern at every recipatica vector with intensity
proportional to the square of the volume of the sample and to the square of the Fourier component
of the scattering potential at wave vedBrThese are the Bragg scattering peaks of the solid. The
scattering into Bragg peskis elastic so that the magnitude of the incident and scattered wave

vectors is the same, i.e.,
K[ = k[ (349

This leadsa a variation of Bragg law, known as the Laue conditiéie have the relation

q=k—-k' (39
At the Bragg scatteringeaks, we also have
qa=0G (36)
Combiring eq. 35 and eq. 3&rive at
k'=k -G (37

Squaring the left and right hand side of eq. 37, we have
K[ =kt -x-6 (39)

Using eq. 34 and rearranging eq. 38, we have

2
G G
2 k.2 39
‘ 5 [ 5 (39
As shown in Figure 4, the right hand of above equation can be evaluated as
k.[E] = [K| Slsino (40)
2 2

Now eg. 39 can bsimplifiedto be



|G| = 2|k|sin® (41)

This relation is equivalent to the Bragg condition as can be seen by substituting

|G| = T (42)
and
2
k| = 5N 43
into eq. 41:
2 sinfd = \ (44)

whered is the distance betweeajacenplanes and is the wave length of incident wave.

6. Excluded volume and incompressibility

The interaction between hard core A and B is
U= fddrddr‘qu(r)/(r 1) () (45)

For FloryHuggins interactions/ has the form
V(r—r")=xdr —r") (46)

wherec is Flory-Huggins interaction parameter. This leads to the-kedlwn interaction energy

U :fddrddr‘gbA(r)/(r 1) ge(r)
= [dUrdr g, (NxAr —r)au(r)
= x [ dron () [dr(r)dr 1)
= x [ d¥r o, (Ng(r)

(47)

In generalV includes the information of excluded volume effect. However, the approximation of

eg. 46ignores the exclusive hard core interactions {atgraction is set to 0 when A and B are not

in identical location)which can be seen in FigureTa avoidunphyscal results from this

Vi Vo

fd"’x‘\b(.r) =y

= |i‘ - J"|

2R [r-r’| [r-r’|

(@) (b)



Figure 5

approximation, the incompressibility condition is introduced.

7. Structure factor for single ideal Gaussian chain and Debye functioKFor more
details, see Chaikin and LubensRyinciples of Condensed MattBhysics 1995, p3233; M.
Doi, Introduction to Polymer Physic4996, p910.)

Origin of the term structure factor. In section 5, we introduce the structure function in eq.
22.Thebracket denotes averaging over all possible configurations. For a syskatafs,|(q)
contains a sum df> complex numbers with phases determined by the positions Nfpeitticles.

If the relative positions of the atoms are random (as for an ideal gas) then the only terms that do
not average to zero are those with a&foa which Z —>Z . In this case)(q) increases
linearly with N (ratherthan with N%, i.e., I(q) is extensive. For fluid phases, where relative
positions are not random for some close neighbor parti¢ggsremainsextensive An intensive

version of the structure function (independeniNpfis obtained by dividind(g) by N or V. The

resulting function,

S(g) = N7UI(9g (49
or

S(@ =V1(a (49)

is called the structure factdvliost experimental data areggsented in the first (dimensionless)

form.

Figure 6

The structure factor of a singleideal Gaussian chainThe Gaussian chain has N segments



which are indexed from 0 th-1. As illustrated in Figure & andm are independent indexes.

Therefore, the structure factor can be calculated as

S(g) = N£<Z 19 (R, ~Ry,) >

(50)
e izz<e7iq'(Rn 7Rm) >
N n m
the ensemble averagecordingto Gaussian distribution
<efiq'(Rn *Rm) >
g 32
_ derefiqr 3 Fldn-mp
2rc[n —m|b?
Using the following relations
r=Y,2 (52
r2 =x2+y?+z? (53
q-r=0oXx+qy+ gz (54
the above integral can be split into three parts:
<e*iq'(Rn 7Rm) >
5 e
~ [ae| 3 Fedn b
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| S A
x [ dye "W e An-mp’ (59
f 2rc[n —m|b?
% 37
><J\dze—iqzz 3 e 2n—m|o?
2rc|n —m|b?
=11 J ;

The first integral is calculated as



27 3x?
- a2 fow
X
2rc[n —m|b?
) g
3 “m? X
_ fdxe 2n-m|p
2rc[n — m|b?
3
2 )2
_12 fdxefnx —igx
T
3 19 19
2 5 —o2(x X\ 2 X
- ZF [ P
™
3 .
2)2 o?(x— %z (1)
— | fdxe 20° 402
™
3 .
2 5 ("qx)z
— |2 e 4? fdtefoztz
2 Y :
2 L S
— U_ e 452 1 2
s 0‘2
4’
—e 402
2
qi‘n—m‘bz
— 6

Here we use the Gaussian integral
foo dte ot = | L

Iy andl, are similarly obtained:

2
| efc%‘nfm‘bz
y =

2
| f%‘nfm‘bz

Substitute eq. 56, 58 and 59 into 55, we have

Z:

qz‘ ‘ 2
; ——|n—-m{p
<e7|q'(Rn 7Rm) > = e 6
where

e ]

Substitute eq. 60 into eq. 50, andNit B,

—f dnf dm eﬁin mF

:N2 dnfdme6

:Nfdnfdm e CRyn-m|

S(a)

\ |

‘n m Nb?

In last line,n andm are rescaleth the range of 0 to,Jand the radius of gyratidﬁ,Z:NbZ/G.

(56)

(57)

(59)

(59

(60)

(61)

(62)



fldm e ORn-m
0
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eqz%znfl dm e TR™
n
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x =R, (64
Substitute above resiifito eq. 62, we have
S(@ = N exn & g
(@ =N dn| 5 - Sexn S
1 e‘xz 2,
:Nfdn——Nfdn—e —Nfodn7e?‘
- N
X2
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“NZinte ‘o
x2 X
—X
=N % — E + 3
x4 x* X2
_ 2 ~x2 2
=N x_4 € 1+ x )
= Ng(x)
The Debye function The Debye function is
9(®) = 34 eX —1+ % (66)



Figure 7
Debye function has two asymptotic forms. Wh&hg,

o(%) = X% (67
S(a) = q?;; (68)
And when X 0,
g(x):%l—xz—&-ﬁ—l—i—xz =1 (69)
X 2
S(g = N (70)

8. Response function and fluctuatiordissipation theorem(For more details, see M.
Doi, Introduction to Polymer Physicd996, [29-32; Chaikin and LubenskyPrinciples of
Condensed Matter PhysjcE995, p35.

In statistical mechanics, the probability densityctionis

P ~e Y (71)

The ensemble average of any physical quafttifye density as an example) can be evaluated

*“’Uo —*o
<¢>—Tr o] oot (72

TR O] Jow @
HereTr represents trace, which denotes integrating over alliple configurations. The external

potential is
Uge = [dPre(nu(r) (73

Under the external potentiahe ensembleverageof density will deviate from £:

IDME*J(UO HUex)
(o = oy (9

(74)



If the external field is small, the deviation
o0t = (s}, —(9) (79
can be written as a linear function of the external potential:
SH(r) = —fd3r' I, 1)U () (76)

whered(r,r§ is called the response function. It can be calculated

I(r,r’) 6[%] (77)
rhr') =—
Mgy (1)
It is related to théJrsellfunctionS,(r,rd as follows:
o(r,r') = 8S,,(rr ) (78)

The above equation is the fluctuatidissipation theorem. Below we will give allustrative
proof.
The Ursell function can be derived from fpoint densitydensity operatoror density

fluctuation as follows:

Sin(rr?) = Cooltr ) — () ){dr )
(BAr) ) — (dn) )&
(BAr) ) + (dn) ){¢
= ([o(r) — (dn) )|[dr) —
= (66(r)se(r") )

)
"))
M) (@) ) - (@) @ ) @9
(4 )])

The ensemble average of density under external potential can be rewritten in the term of

equilibriumensemble average as
fD¢¢e—;3(UO+Uext)

<¢>U - waf.‘f(Uoﬁ’Uext)
- fDW]eﬂcUex[eawo f D¢>e”‘”0

, , (80)
ngge*ﬂUo fD(z)e*“ﬂexte*JJo
B <¢e—wext >
<e_wext >
Under weak external field, i.e. in the limit
Mgy — 0 (8D

theexponentiaterms can be expanded to the first order term,



<¢>u o <<¢ee M gy >>
(01— Mg )
(1 Mgyq)
<¢>> B M)
1-B(Ueq)
= (0)- 1

(Me) 1+ 8Uex)
=(0) = 8(Meq) +5(6)Uen)

where thesecondrder term of tlexp2 is ignored. From above equation, the density deviation is

(82)

5(1)

76<¢Uext>+ﬁ<¢><uext>

~8{om [d¥r () )+ 8(gn )( [d¥ eryur) )

=B [P (o) () + B(dn) ) [d¥ (6r) Wr) (83
=B [P (o)) )U(r) + 8 [dF (dn) ){er) Wr)

— [drB[{edr) ) - (dn )(4r) )Ur)

Il

Compare eg. 83 with eq. 76, we find the response function
r(r,r) = Bl{dr) dr) ) — () ) (&) )] (84)

Compare eq. 84 with eq. 79, the term inside thesgbracket in eq. 84 is just Ursell function.

Thereforethe proof is completed

9. Random phase approximation RPA) (For more details, see M. Ddntroduction to
Polymer Physics1996, p2935; Chaikin and LubenskyPrinciples of Condensed Matter
Physics 1995, p3839)

Let us consider a mixture of two polymers A and B, having degrees of polymerikiatanmd

Ng, respectively. Lef,, fg be the overall volume fractions of each type of segment, with
Pp Tt =1 (89)
The density operators for A and B also satisfy the relation for incompressible system:
Oa(r) + () =1 (86)
Letting <¢ > denote an equilibrium ensemble average, then
(@a(0) = 0 (87
(6(r)) = o4 (88)

The deviation of the segmental density is defined by



5¢A(r) = ¢A(r) - ¢A (89)

6¢g(r) = dg(r) — ¢ (90)
From this definition, the following relation is held

OB (N) + 6dg(r) = (1) — o + (N — ¢

= [@a0 + (0 ]|~ [6) + 5 | 1)
=1-1
=0
So
6 (r) = —8¢g(r) (92

Thefluctuation is characterized by the Ursell functiong/af(r) andd #(r) as follows:

Saa (1) = (864 () SR ) (93

Sag(1.1") = (8¢ () Ses(r) ) (949

Sea(r.r") = (85(r) 64(r) ) (95)

Sea(rir) = (6s(1) 6(r) ) (96)
Using eq. 92, we have

Saa =% =R T & (97)

Let us consider weak external potential¢r), us(r) which act respectively on the segments

of A and B polymers. The change in the sysiepotential energy is
Ug = [ @[5 (uA() + (1) u() | 99

Then the linear response theory implies

66,(1) = =3 [d' T (r,ryufr) (99)
4]

where subscripta and b run over A and B. Applying fluctuatiedissipationtheorem, we have
L 4(rr’) =pBS,(rr") (100
Homogeneous mixture of A and Bolgmers is fluid which is spatially homogeneous and
rotationally isotropic. This means that the average environment of any point in a fluid is identical

to that any other point and independent of directidius the average properties of a fluid are

invariant with respect to spatially uniform translations through any véctand with respect to



arbitrary rotations about any axis. Translational invariance implies
S.s(nr’) =S r +Rr'+R) (101
In particular, we can chooseto be equal téréso that
Syu(nr) =S r —r 00 =84 (202
depends only on-r@ Similarly, other spatial quantities also depend-o0d such as
L ,(r)y="T_4 —r") (103
In this form of Usell function and response function, eqisé convolution
69(r) = =8 [ S(r —r)ur) (104
which is mostconvenient in Fourier spacdsing Fourier transfornto eq. 104, the left hand side
is
Jdroane st = soa) (109
and the right hand side is

fd3r [fﬁfde’r 'S(r —r)ur’) }e*iq'f

= fﬁfd3rfd % 'S(r —r"ur e 9’

= —ﬁfd*"r ‘u(r')fd3rS(r —r")elar

- fﬁfd*"r 'u(r')fd3RS(R)e-iq'<f'+R) (106
= =3 [d u(rye " [ d*RYR) €"I*

= =3 [d% 'u(re ')

—08(0) [ &' ure

~ —B5(@U9

Thus, in Fourier space, the convolution is just a multiplication

6¢(a) = A ¢ g (107
In the above context, we first outline the basic RPA procedure as follows. In general, if an
external filedu(q) is applied to the syst® the resulting change in the concentration is given by
66 = —3SOu (109
Hereafter ) is dropped from all related physicgliantities for simplicity. Now, in reality there

are interactions between components, which we will take aotmuntthrough the meatfield

approximationThe interactioru changes to an effective interaction

Uy = U+ W (109



where (@ is different from the one in ed08, itsatisfies

5 = —pS©
’ = —ZS(O) %Lf W (110
Re-express above equation in the form
56 = —3SRPAY (111)
We finally obtain theJrsell function under external potentigl:
QRPA _ i (112

1+ BSOw

The Ursell function for the mixture of A and B polymers can be calculated by following the
RPA procedure. First of all, let us consider the case where the polymers A and B are placed on the

lattice at random, without excluded volume effects @rimttion energies. In this case,

SQ(r —r7) = (66, 6u(r) ) =0 (113
S0, = (665(r) 865(r) ) =0 (114
but
S —1) = (84, 64, ) ) =0 (119
SR 1) = (665(r) 66(r ) ) =0 (116

since the segments of the polymers are linked together. According to linear response theory, the

changeof concentration is givehy (using eq. 99)

sop(r) = =6 [ SQr —r)u) -8 [ Qo )y

= —ﬂfd3r 'SO(r —r)u () (1179
In Fourier space,
66 = 083 4 (119
Similarly,
565 = IS (119

Now, in realitythere are interactions between the chains. Through the-fiteghiapproximation,

the molecular fields acting on the segments are given by

WA (1) = —2Z[epga h (1) + 5g @ (1) | (120



Wg(r) = —2Z[ggada (1) + G & (1) | (121

Further, there is the conservation of volume condition (isgbte condition eq. 86), which can be

represented in the following potential form (which can also be viewed as a Lagraltigéer):
U = [A3V (0 [00(1) + 1) | (122

Here V(r) is a potential determined from the volume conservation condition. The mean fields
acting on segments A and B are, respectively+V and wgt+V, and so the changes of

concentration are given by the followitig Fourier space)

S6p = —BSQ W + W +V (123

Sbg = —0SD y +w +V (124)
wherew, andwg are Fourier transform afis(r) andwg(r), which can be calculated as

W, = *Z[EAAEV@\ (r)iq‘r + &g fdgl’(g (1 e“”}
= —Z a0 + 2 0@

(125

Wy = fz[eBAErgbA(r)iiq'r + &g fd:"’rqg(r) e4q"]

(126
= —Z cgpOp + g O

where we use the relation

@ = fd3r6<;5A(r)e’iq‘r |
:fd3r[q5A(r)—q5A e-iar (127
= [dron(nea

o = [
:der{cz)B(r)f% le-iar (129
:fd3rqu(r)e“q"

Substitute eq. 125 and 126 into eq. 123 and 124, we have

5o = —0SQ| W ~Z ga 0k +g 0§ +V] (129

6ty = S U — 2 a0 + 5 08 + V| (130
Moving the term before the square brackets in the above two equations to the left hand, and then

subtractinghe first equation from theecond equatignwe have

S6s  Odg _ -
BSA(O) N ﬂ¢%0) =Up —Ug —Z| Ean — G 6@ + a8 — 8B 6@ } (131)
—BSpA _ )




With the following relation

Sy = —bhg (132
Epp = Ean (133
we can rewrite eq. 131 to be
1] 1 1 |—/— -
5 S(_°)+@]6¢A U % —Z 5 tee 2 0% (13
AA B
Further rearrangement leads to
-1
- 1 1
5¢A:*ﬁw+—o)*2X Ur — g (139
SAA %B

wherec is the FloryHuggins interaction parameter which is defined as

(136

From eq. 107 and eq. 135 the Fourier transform of the concentration fluctuations is given as

follows:

1 _ 1,1,
S@ sQ@ 29

(137

The above approximation has used the completely random state as a base, and has estimated
the effect of interactions through a perturbation calculation. Therefore, this modehjspticable
to systems with strong correlation effects, for example a solutionchemnere there are large
fluctuations in the concentration. However, the accuracy of this approximation improves as the

concentration increases, and it holds quite feelpolymer blends.

10.Landau theory and phase transition

See Chaikin and Lubenskyrinciples of Condensed Matter Physit895, p154188.

11.Variational mean-field theory (For more details, see Chaikin and Lubengkjnciples
of Condensed Matter Physjcs®5, p198201, p.204205)
Variational meatfield is a measfield theory valid for all ranges of temperatures for systems

with order parameters of essentialsbitrary complexity. This ariationalmethod is based upon



approximating the total equilibrium dgity matrix by a product of local site or particle density
matrices and if often referred to aglhir meanfield theory.

Let 7 be any random variable, which can be either continuous or discrete, and let
P(¢) =0 (139

be its associated probability distribution. Then the expectation value of any fui(€}itn
(f(@)=Tr[RI{ ¥ | (139
where Tr signifies a sum or integral over all possible valués Diie inequality
<e*A¢> > e M9 (140

valid for any probability distribution, may be proved as follows. Consider the following function

F(p) =e? —1—¢ (141
Its first-order derivative is
F'(¢) =€ -1 142
When£=0,
FO) =0 143
When7>0,
F'(¢) >0 (149
i.e.F(f) is an increasinfunction Thus,F(f)>0. Whenf<0,
F'(¢) <O (145
i.e. F(f) is a decreasinfunction Thus,F(7)>0. In summary, for alf, F(F)>0. So we have the
inequality
e >1+¢ (146
Therefore,

ef)\(p _ ef)\<o>efx\ 07<(p>

14
>e 12 6 —(0) | -
which, when avexged oveP(f), implies
() =12 0-(s) ])
= 1-a 0 (0} )
— e 1-(2g) + (A(4)) (149
—e M 1 A(6) + (o)
:e7A<O>



which establishes eq. 140.
Now consider a classical Hamiltonian H that is a function of a discrete or continuous classical

field 7. Let r(f) be any classical probability distribution satisfying

Trp=1 (149
and

p¢) =0 (150

The canonical partition function can Weitten as

z — Trle ™0l

= Tr | pLe o]

p
= Tr|pe nreg ™ []

(151)
—Tr pe—,HH[q‘)}—lnp
_ <e—;iH[o]7|n /)>

—GF

/)
=e

where < > signifies an average with respect to the density matard wherd- is the free engy
(or more precisely the thermodynamic potential) associatedHviffhus, using eq. 151 and the
inequality in eq. 140, we obtain

(152

e,m: _ <e—JH[O]—|n p >
/}
e

—A(H),~(Inp),

Y

or

F<F

- 0

= <H>/} +kgT (Inp) (153

P

= Tr[pH |+ kgTTr [dn p]

whereF, is an approximating free energy associated withdensitymatrix r. is a minimum with

respect to variations insubjectto the constraint

Trp =1 (159
when
p—ge™ (159

is the actuagquilibriumdensity matrix. This can be seen from the equation

oF
6—”:H +kgT(Inp+1) =¢ (156
)

wherez is a Lagrange multiplier whose value is chosen to impose the constraint eq. 154. Thus, at



its minimum with respect to is the actual free energy

* Equilibrium state: the system has a free energy that corresponds to the maximum number of
possible configurations. Note that each configuration thassame probability to appear. To
simply understand this, use a two diegperimentas an example. Sum of the points of these two
dicesé free energy. A certain combination of two points on these two dicesnfiguration. The
equilibriumstateeé  when the sum = 7: it has six configurations {1,6}{6,142,5K5,2K3,4K4,3}.

The mean-field approximation. The inequality, Eq. 153, provides the basis for variational
approximations to the freenergythat can be implemented as follows: a functional form with free
unspecified parameters is chosen for a trial density mattix approximag the actual density
matrix. The trial density matrix with the chosen functional form that best approximates the actual
density matrix is obtained by minimizing the approximate free erergyith respect to the free
parameters irv. Meanfield theory is dtained by a trial density matrix that is a product of
independent single matrices. Af, is the single particle density matrix depending only on the
degree of freedom of particke the measfield density matrix is

p=11Ir. (157)

and the variational medield free energy is

F,=(H) +kgT > Tr[p,In p,] (158

The precise form of 4>, will, of course, depend od. The second term in eq. 158 is obtained as

follows:
<In p>p =Tr [pln p}

=Tr Hp(}ln Hpﬂ
3

[e%

r HpNZIn Py ‘
o 6]

r ppypg- Inpy+In py,+n pg+ - }
(| ppops N pit pppgnpyt pppgeIn pgt ]
r[ Py poin oy
+Tr[ P1P3 Pl pz}
[
[

(159

I

4 44 4

FT0[ p1papy-e paln paf + -
=Tr|pln pl] +Tl‘[p2|n p2}+Tr [pén ps] 4o

= > Tr(p,In p, ]|

«

We canconnectthesingle particle density matrix with density operator by



(6.0, =(4.) (160

Example: derivation of Flory-Huggins theory for mixture of small molecules A and Bin
the mixture, there arél, molecules A andNg molecules B. Letx,? denote the positions of
components A ands” denote the positions of components B, wherand b are indexes varies

from 0 toNa-1 and 0 td\g-1, respectively. The density operators are

n,(x) = > §x —x9) (162

wheres runs over A and BWith the mearield density matrix is

p= HPA(X;{)l:[pB(Xé’) (162
theaverage number density of molecules A can be calculated according to eq. 160:
(na () = <Zﬁ(x —Xa >
=Tr ’pZ(f(X - X%
[T oa(x2) HPB( X3 Z@ X —Xg)
[T rax2) UPB( X3 Z@X —Xa)
144 |

—T

-

=T

-

=Tr HpA(XZ{)Z&X —xa) Tr
= Tt [Toa0) Do 8x = x2)
=T ZHpA(x;o&x—x;c)'
= 2T TToatx € = x3)
= ZTr [TPa(x) & x —x2)

— ZTr I pA(xX)i'r [pA( XD X — X ]

a=q'

= DTt paXR) X —x) }

-3 [ o3 o (6 )80¢ = x5 (163
= ZPA(X)
= |<iApA )
similarly,
<nB(X)> = NBPB(X) (164)

The Hamiltonian of this system is



ZZV{, S (xe = x0) (165

(\daa

whereV is the molecular interaction between two molecules either of type A or type B. The
Hamiltonian can be rexpressed in the term of density operator:

Z f d3xd®’ n, (YV, , (x —x)n_(x) (166)

(7(7

This can be proved by substituting eqg. 161 into eq. 166 as follows:
H = %;f&xd?’x' n, XV, ,(x —x)n, (x)
= %gfds‘xd?‘x‘;é(x — X2V, (X —x)n, (x)
_ %;f&x'ng.(x")fd3x\/m|(x —x');é(x X
_ %;f&x'n”.(x')zlfd?’)(\/w.(x —x;)dx — X
- 32 IELLRCDOWAMCEERY
= -ZZfd3x n, (XN, , (x5 =x)

(7{7 (&3

:_ZZfd3 Zé(x—x N, (X2 —X)

(7{7 «

=—ZZZfdxvm X; —X)x' = x})

ag,o «

= —ZZZVM (xe —x7)

(T{T [e3

:—ZZVM (x¢ —X;f. (167)

(7{7 "o,

Note that in the above derivation, indexeand b are smart enough that thegn run over from 0
to Na-1 whens=A, and from 0 toNg-1 whens=B. Using the linear property of summation and

integral operator in eq. 166, the ensemble averatfere$pect to is easily obtained as

HY) = <%Zfd3xd3x' n, (Y, ,(x —x)n,(x) >

1 (168
- §§fd3xd3x'< n, ()N, (x =x) {n(x) )

Theensembleverage of In is calculated as



<In p>ﬂ =Tr [pln p]

=Tr HpA(X )HpB(xBMn HpA( X3 1‘[@( %y ‘
Tr[nmx)m(xg ShosoR +Sh 4 |
(169
=Tr HPA(XA)HPB(XéE“ Al %) ]
+Tr HpA(XA)HpB(XBj En o XB)‘
_ZTr[pA(x;;)ln Al X0 }+zrr A x4 %% |
The first term in the last line cdoe further simplified as
Tr [ oA (%9 |
= fd3xApA (x2)In g, (%)
_ fdz [fdsxp;\(x)axg —’x) }ln’pA( X) 179
= [d®p, (9 [ d I p (%) £
= d3xPA(x)fd3x,§ I o0 (%) € X —X9)
= [d*>pa (91 (%
Similarly, the second term in the last line of eq. 169 is
Tr [pB( xg) N pd X3 ] = fd3ng Xin g X a7y

Substituting eq. 163, 164, 170 and 171 into 169, we have
(np), fd3XpA(x)In (D + Zfd3XpB( 3n af

N deXpA(X)m pA(X) + Nde3x%(>9|n P >)
fd3 nA(X) nA( ) fd3 B()9 <nB()) > (172)

NB
= fd3x

Therefore the variational free energy is

nA(x)>n <n:|( )> +(ng(X >< B(X)>

A B

- %Zf %A% (1, () W, (x —x) (n,(x) )

nA(X)> (neg(¥ )
NA NB

(173

+kBde3x (nA (9 )in A1 (M)

+ (ng(R )=t

A similar example aboutlerivation of DebyeHuckel theoryfor plasma is demonstrated in
the book: Chaikin and LubenskyPrinciples of Condensed Matter Physick995, pl19&01,

p.204205.



12.Perturbation theory

Here we take the simplest Landiage energy as an example. The local free energy density is

fo %‘rqﬁz Fugh (174
and the gradient energy is
° Ve ? (179
2
Thus the Hamiltonian is
[ 1
Higl  dx trg2 S 62 upt (176
2 2
The patrtition function is
177

To calculatez, we first calculat&Zy which can be explicitly integrated:

(179
with Hg being

179
Then rewrite eq. 177 to be

(180
If bV<<1, we have

(181
HereVis

(189
and

(183

The generating function



